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Figure 1: A motion-captured character performs a jumping kick. His clothing is dynamically remeshed to capture detail such as wrinkles,
while having larger elements in smooth areas. Here and elsewhere in the paper, large elements are shown in blue, small equilateral elements in
red, and anisotropic elements in yellow.

Abstract

We present a technique for cloth simulation that dynamically refines
and coarsens triangle meshes so that they automatically conform
to the geometric and dynamic detail of the simulated cloth. Our
technique produces anisotropic meshes that adapt to surface curva-
ture and velocity gradients, allowing efficient modeling of wrinkles
and waves. By anticipating buckling and wrinkle formation, our
technique preserves fine-scale dynamic behavior. Our algorithm for
adaptive anisotropic remeshing is simple to implement, takes up
only a small fraction of the total simulation time, and provides sub-
stantial computational speedup without compromising the fidelity
of the simulation. We also introduce a novel technique for strain
limiting by posing it as a nonlinear optimization problem. This for-
mulation works for arbitrary non-uniform and anisotropic meshes,
and converges more rapidly than existing solvers based on Jacobi or
Gauss-Seidel iterations.
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1 Introduction

Cloth in real life simultaneously exhibits both highly detailed wrin-
kles and folds, and flat or smoothly curving regions. As the cloth
moves, the fine wrinkles appear and disappear at different locations.
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Wrinkles may also migrate across the surface or travel in a wave-like
fashion. With a fixed simulation mesh, adequately resolving these
details requires a large number of extremely small elements over
the entire mesh. The resulting computation and memory costs for
uniformly high-resolution simulations can be burdensome, and it
is instead desirable to focus simulation resolution in regions that
exhibit complex shape and motion, while representing flat regions
with coarser elements.

In this paper, we present a technique to dynamically refine and
coarsen a finite element mesh used for cloth simulation. Our scheme
creates anisotropic elements that follow the curvature of wrinkles
and creases in the cloth. It preserves dynamic behaviors by main-
taining resolution conforming to high velocity field gradients. It also
anticipates the buckling of the material by refining the mesh where
it is beginning to become compressed.

The resulting simulation method efficiently produces results that are
visually equivalent to those produced with more costly uniformly
high-resolution meshes. By adaptively refining and coarsening the
mesh, elements are concentrated in detail regions. The anisotropic
nature of our remeshing algorithm means that refining near clusters
of long parallel wrinkles, which occur commonly in cloth, will
require roughly linear instead of quadratic growth in the number of
elements. Anisotropic remeshing also tends to align mesh edges
with wrinkles so that visually they appear smoother. These features
can be seen in Figures 1 and 2. Our adaptive, anisotropic remeshing
procedure is computationally inexpensive and simple to implement.

We also introduce a fast technique for performing strain limiting on
large meshes. Existing methods based on nonlinear Jacobi or Gauss-
Seidel iterations converge slowly for large meshes. By casting strain
limiting as a constrained optimization problem, we obtain faster
convergence using the augmented Lagrangian method along with
nonlinear conjugate gradients.

2 Related Work

Cloth simulation. Cloth simulation has been a major topic of
computer graphics research for over two decades. Many success-
ful techniques have been proposed for modeling the dynamics of
cloth and for handling collisions [Baraff and Witkin 1998; Bridson
et al. 2002; Choi and Ko 2002; Bridson et al. 2003]. Summaries
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Figure 2: A square sheet of cloth interacting with a moving sphere is simulated with, from left to right, (a) a fixed high-resolution mesh with
65.5k faces, (b) adaptive anisotropic remeshing with average 11.3k faces, (c) adaptive isotropic remeshing with average 30.3k faces, (d) a fixed
mesh with 11.3k faces. The results of (a), (b), and (c) have comparable wrinkles, while (d) has fewer and exhibits stiffer looking motion. As
shown in Table 1, the cost of simulation with adaptive anisotropic remeshing is significantly less than the comparable uniformly or isotropically
meshed simulations.

covering much of the work done in graphics for modeling cloth
and deformable bodies can be found in the recent survey articles of
Nealen et al. [2006] and Thomaszewski et al. [2007].

In this paper, our goal is to represent the fine details of wrinkles
and folds in cloth directly in the simulation mesh through adap-
tive refinement. An alternative approach would be to simulate on
either a coarser or reduced model, and then add visual detail dur-
ing a postprocessing step. A number of recent cloth simulation
techniques fall into this category. Strategies for determining the
additional detail include learning from high-resolution simulation
data [de Aguiar et al. 2010; Feng et al. 2010; Wang et al. 2010a;
Kavan et al. 2011], sampling from recordings of real cloth [Popa
et al. 2009; Hilsmann and Eisert 2012], and directly applying a
simplified physical model [Müller and Chentanez 2010; Rohmer
et al. 2010]. We have observed that the dynamics of fine details can
be visually significant and we believe there is utility in simulating
fine details directly rather than approximating them. However, we
also believe that our approach is complementary to these detail en-
hancement methods. For example, our adaptive simulation could
replace the uniform base simulation in the method of Müller and
Chentanez [2010], allowing a controlled trade-off between realistic
dynamics and computational speed based on the scale at which a
transition from our dynamic wrinkles to their quasi-static wrinkles
occurs.

We have observed that the constitutive model used for cloth simu-
lation can have a significant impact on the overall appearance and
perceived realism of the resulting motion. Recent work has focused
on building realistic constitutive models from measurements of real
cloth materials. Techniques for measuring this data have been de-
scribed by Volino et al. [2009], Wang et al. [2011], and Miguel et
al. [2012]. In our examples, we have made use of the constitutive
model proposed by Wang et al. [2011] with parameters derived from
their published measurements of various cloth materials.1 Other re-
lated work includes capturing of volumetric elastic materials [Bickel
et al. 2009] and example-based simulation of elastic materials [Mar-
tin et al. 2011].

Remeshing. Recently, there has been substantial interest in dy-
namic remeshing of simulation meshes, especially for simulation of
plastic flow and fluid dynamics. Some previous work has used Eule-
rian tetrahedral meshes for fluid simulation which require remesh-
ing to account for moving boundaries such as obstacles [Klingner
et al. 2006] and free surfaces [Chentanez et al. 2007]. For plas-
tic flow, Bargteil et al. [2007] and Wojtan and Turk [2008] used
a Lagrangian finite element mesh whose vertices moved with the
flow, and performed global remeshing whenever elements became
poorly conditioned. Wicke et al. [2010] extended the tetrahedral
mesh optimization framework of Klingner and Shewchuk [2007] to

1http://graphics.berkeley.edu/papers/Wang-DDE-2011-08

do dynamic anisotropic remeshing for Lagrangian simulations with
elasticity and plastic flow. For detailed simulation of elastic bodies,
Grinspun et al. [2002] advocated refining the finite element basis
functions rather than the mesh elements themselves.

A number of dynamic remeshing techniques have also been pro-
posed for cloth simulation. Early work used mass-spring systems in
a square grid refined in a quadtree fashion [Hutchinson et al. 1996;
Villard and Borouchaki 2002], or a hierarchical representation of a
multiresolution triangle mesh [Li and Volkov 2005]. Those meth-
ods used curvature alone as the refinement criterion, which tends
to suppress the formation of wrinkles as it is more difficult for an
underresolved mesh to buckle. Simnett et al. [2009] used an edge-
based approach for refining a triangle mesh, including compression
and collisions as additional refinement criteria. All of these tech-
niques use a mesh hierarchy to maintain regularity of element shapes
and simplify the coarsening operation; however, this precludes the
creation of anisotropic elements, which we find are necessary to
efficiently represent the folds and wrinkles of real cloth.

Because we represent cloth geometry as a two-dimensional trian-
gle mesh, our work is also closely related to previous work on
remeshing of static surfaces. In general, the body of literature fo-
cusing on generating, refining, and optimizing triangle meshes is
extensive; a comprehensive review can be found in the survey by
Alliez et al. [2007]. Particularly close to our method, techniques
for anisotropic meshing in two dimensions have been studied in
the computational geometry literature [Bossen and Heckbert 1996;
Labelle and Shewchuk 2003]. In computer graphics, efficient tech-
niques have been proposed for simplifying meshes [Hoppe 1996;
Garland and Heckbert 1997], while refinement can be performed us-
ing subdivision rules such as those of Catmull and Clark [1978] and
Loop [1987]. Although splitting, flipping, and collapsing edges have
been well established tools for mesh refinement and simplification
(for example [Popović and Hoppe 1997; Garland and Heckbert 1998;
Jiao et al. 2006]), there is little discussion about using dynamical
metrics to achieve a desired spatial and directional distribution of
mesh resolution.

Strain limiting. Provot [1995] introduced strain limiting as a tech-
nique for stably modeling stiff springs by imposing constraints on
the maximum and minimum allowed strain of each link. Subse-
quently, many extensions of this technique have been developed
by different authors. Goldenthal et al. [2007] proposed an efficient
constrained Lagrangian method for modeling inextensible spring
networks. For triangle meshes, English and Bridson [2008] used non-
conforming elements to model inextensible cloth. Thomaszewski et
al. [2009] presented a continuum-based technique that independently
constrained the three components of the strain tensor. A technique
for isotropic strain limiting was proposed by Wang et al. [2010b],
who also introduced a multiresolution approach for enforcing these
constraints. We found that these existing techniques did not perform
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Figure 3: A dress is modeled using five flat panels stitched together.
We retain the flat shape of the panels in the form of two-dimensional
material space coordinates stored for the vertices of each face. Ini-
tial meshes may be quite coarse as adaptive meshing will automati-
cally refine them as needed.

well when applied to our highly nonuniform, anisotropic meshes,
and in this paper we also propose the use of a numerical method
with better convergence properties to enforce strain limits.

3 Simulation Overview

We represent the cloth as a finite element mesh composed of one or
more triangulated panels, as shown in Figure 3.2 We use a planar
reference embedding for the panels where each vertex i is assigned
two-dimensional material space coordinates ui. Some of the panel
boundary edges correspond to seams or darts. The vertices along
these edges are associated with corresponding vertices on the bound-
ary edges that are joined by the seam.

Each vertex also has a three-dimensional world-space position xi,
and velocity vi. However, not all vertices have distinct positions
and velocities. The vertices associated with a single location on a
seam will share a single world-space position and velocity. This
representation explicitly fuses separate panel boundaries together
along seams by mapping all of a vertex’s material locations to a
single location in world space. We use lumped masses so that
each node has a scalar mass mi that is set to one third of the sum of
material-space areas of its incident faces, multiplied by the material’s
area-density. Vertex normals ni are computed using a weighted
average of face normals [Max 1999].

For the constitutive model, we use the piecewise linear stretching
and bending model described by Wang et al. [2011] with parameters
derived from their measured data. In-plane stretching is treated
implicitly using a corotational finite element approach [Müller and
Gross 2004], while bending forces are added using a discrete hinge
model [Bridson et al. 2003; Grinspun et al. 2003]. The linear system
for implicit time integration is solved using the sparse Cholesky-
based solver in the TAUCS library.3 We detect collisions using a
bounding volume hierarchy [Tang et al. 2010] and compute collision
response using non-rigid impact zones [Harmon et al. 2008]. Our
remeshing and strain limiting techniques are independent of these
choices, and would also work with other triangular finite element
cloth simulation methods.

Our simulation loop is essentially the same as the traditional cloth
simulation loop, with the addition of our dynamic remeshing step
that runs periodically. If continuous collision detection is employed,

2Cloth is typically manufactured as flat sheets and nearly all manufac-
tured garments are assembled from multiple cutout panels that are joined
together at seams. As with prior clothing simulation methods (e.g. [Carig-
nan et al. 1992; Decaudin et al. 2006; Umetani et al. 2011]) we model
three-dimensional garments as assemblies of flat panels.

3http://www.tau.ac.il/∼stoledo/taucs/
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Figure 4: The three basic remeshing operations applied to the mesh
at far left. From left to right, the results after the edge AB is: split;
flipped; and collapsed in the direction A→ B.

remeshing must be performed between collision detection intervals.
The remeshing algorithm is described in the following section. We
also introduce an optimization-based technique for strain limiting,
which we describe in Section 5.

4 Dynamic Remeshing for Cloth

The goal of remeshing is to refine the simulation mesh enough to
resolve visual and dynamical detail, while coarsening the mesh in
areas where such detail is absent. In particular, we aim to capture
fine wrinkles and folds using small, narrow triangles oriented along
these features, while still having large triangles in the flat, smooth
areas of the material.4

To achieve this goal, we phrase the dynamic remeshing algorithm
simply as the task of finding the coarsest mesh whose edges are
all short enough to resolve simulation detail. Formally, we define
a sizing field as a tensor field M over the embedding space that
describes the maximum permitted length of edges at each location
and orientation, and we perform local remeshing operations to make
the mesh satisfy this sizing field. The use of a tensor field to control
the size and shape of the mesh is an established strategy in adaptive
meshing (for example, [Bossen and Heckbert 1996; Labelle and
Shewchuk 2003; Wicke et al. 2010]).

4.1 The Remeshing Scheme

For now, assume that the sizing field is given as a tensor field M
defined at each of the vertices of the current mesh. Using this sizing
field, we may define the size of an edge between vertices i and j as

s(i, j)2 = uTij

(
Mi + Mj

2

)
uij . (1)

Here and below, we write uij to denote ui − uj for convenience.
If the edge lies on a seam, we apply the above formula both to it
and to its corresponding edge across the seam, and take the average.
We judge an edge as valid if its size is at most 1. Our remeshing
algorithm proceeds by refining the mesh until all edges are valid,
and then coarsening it as far as possible without introducing any
edges that are close to being invalid.

We use three basic remeshing operations: edge splits, edge flips, and
edge collapses. These operations are illustrated in Figure 4. Edge
splits and collapses apply simultaneously to both sides of a seam.
Edges along seams and boundaries cannot be flipped.

An edge may be split unconditionally if its size exceeds 1. The
material-space coordinates, the velocity, and the sizing field at the
newly created vertex are interpolated halfway between the two end-
points of the edge. We set the new vertex’s world-space coordinates

4Thin triangles with aspect ratios far from one are often blamed for insta-
bility and poor accuracy. However, when the underlying fields are anisotropic
and the thin triangles in the discretization are accordingly oriented, they can
be as accurate as and no less stable than higher-resolution isotropic elements.
We refer the reader to the article by Shewchuk [2002] for further discussion.

ACM Transactions on Graphics, Vol. 31, No. 6, Article 147, Publication date: November 2012.

http://www.tau.ac.il/~stoledo/taucs/


147:4 · Rahul Narain, Armin Samii and James F. O’Brien

by minimizing a generalization of the quadric error metric [Garland
and Heckbert 1997], taking into account both surface curvature and
strain within adjacent faces. Specifically, we choose its position xi
to minimize

Q(xi) =
∑

vertex j
adjacent to i

(
(xi − xj) · nj
‖ui − uj‖

)2

+
∑
face f

adjacent to i

‖εf‖2F , (2)

where εf is the element’s strain tensor and ‖·‖F denotes the Frobe-
nius norm. We linearize εf with respect to xi about the world-space
midpoint of the original edge, thus reducing Q to a quadratic func-
tion which can be minimized by a linear solve.

Edge flips serve the purpose of ensuring that triangles are well
shaped with respect to the sizing field. We use the anisotropy-aware
criterion of Bossen and Heckbert [1996] to determine whether to flip
an edge. If an edge ij has adjacent vertices k and `, then it should
be flipped to form edge k` if

(ujk × uik)uTi`Mavguj` + uTjkMavguik(ui` × uj`) < 0, (3)

where Mavg is the average of the sizing fields at all four vertices,
and a × b = axby − aybx is the two-dimensional cross product.
This test is equivalent to testing whether the edge is Delaunay in the
stretched space of the sizing field [Labelle and Shewchuk 2003].

An edge collapse can be performed on a given edge in two ways,
namely by removing either one of its vertices; when collapsing, we
try both in an arbitrary order.5 Collapsing an edge is forbidden if

• it changes the panel boundaries in material space,
• it produces any face that is inverted, or whose aspect ratio is

too small, or
• it creates any edge that is close to invalid.

By “close to invalid”, we mean that the sizes of the new edges must
not exceed 1 − h, where h is a small hysteresis parameter; this
asymmetry prevents oscillations between splitting and collapsing
over consecutive frames. We use h = 0.2 for all the results shown.

Given these local operations, all that remains to define the dynamic
remeshing algorithm is the schedule of how they are applied to the
input mesh. Our algorithm, shown in pseudocode in Algorithm 1,
has two phases. In the first phase, we eliminate all invalid edges by
repeatedly splitting edges whose size exceeds 1. In the second phase,
once all edges are valid, we attempt to coarsen the mesh as far as
possible without introducing invalid edges. Each phase terminates
when no more changes to the mesh are possible. In each phase, we
perform edge flips to maintain the quality of the mesh.

For efficiency, in the COLLAPSEEDGES and FLIPEDGES subrou-
tines, we maintain a set of active faces which have been recently
changed, and only consider the edges of those faces as candidates
for remeshing. Faces created (or destroyed) by a remeshing oper-
ation are added to (resp. removed from) the active set. Also, in
the SPLITEDGES and FLIPEDGES loops, we reduce the number of
edge size evaluations by operating on many independent edges in
one iteration. Two edges are considered independent if they share
no vertices, and so can be split or flipped without modifying each
other’s adjacent faces. A maximal independent set of edges can be
computed greedily in linear time: for each edge, we check if it is
valid to split/flip and its vertices are not already selected, and if so,
we add it to the set and mark its vertices as selected.

5We do not collapse an edge to its midpoint, as doing so would require
averaging physical quantities such as world-space positions and velocities.
We want to avoid such averaging as much as possible as it causes artificial
damping and degrades the cloth’s motion.

Algorithm 1 Our adaptive remeshing algorithm.
procedure ADAPTIVEREMESH(mesh M )

SPLITEDGES(M )
COLLAPSEEDGES(M )

procedure SPLITEDGES(mesh M )
repeat

E ← maximal independent set of splittable edges in M
for all (i, j) in E do

if edge (i, j) still exists in M then
Split edge (i, j)
Run FLIPEDGES on faces created by split

until E = ∅

procedure COLLAPSEEDGES(mesh M )
F ← set of faces of M
repeat

Find collapsible edge (i, j) adjacent to a face in F ,
removing faces with no collapsible edges

Collapse edge (i, j)
Update F with faces changed by collapse
Run FLIPEDGES on faces changed by collapse
Update F with faces changed by flips

until F = ∅

procedure FLIPEDGES(set of active faces F )
repeat

E′ ← set of edges adjacent to faces in F
E ← maximal independent set of flippable edges in E′

for all (i, j) in E do
Flip edge (i, j)

Update F with faces changed by flips
until E = ∅

4.2 The Sizing Field

We want the mesh to be finely resolved where the surface is curved,
to capture geometric detail; where the material is compressed, to
allow it to buckle; and where vertex velocities are rapidly varying, to
retain dynamical detail. Therefore, we define the sizing field in terms
of the curvature, compression, and velocities of the material. As
these involve material-space derivatives and are most conveniently
discretized on faces instead of vertices, we first compute the sizing
field on faces, and then perform area-weighted averaging to interpo-
late the values onto vertices.6 One issue is how to define the sizing
field at vertices that lie on seams; our solution is discussed at the
end of this section.

Similar to Rusinkiewicz [2004], we can estimate the curvature over
a face by using the differences in vertex normals. The change in
normal between vertices i and j can be expressed as

‖ni − nj‖2 = ‖∇n · uij‖2

= uTij(∇nT∇n)uij , (4)

where ∇ = ∂/∂u denotes the Jacobian with respect to material-
space coordinates, discretized on faces using the finite element basis
functions. A similar metric can be written for the velocities,

‖vi − vj‖2 = uTij(∇vT∇v)uij . (5)

6If we stored the sizing field on faces during the remeshing process, it
would be difficult to assign values to new faces after each operation without
an expensive recomputation. Interpolating onto vertices does have a side
effect of introducing a small amount of smoothing in the sizing field, but we
find that this helps to create meshes that are smoothly graded.
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High-res reference With Mcmp Without Mcmp

Figure 5: A square sheet of cloth under compression from two sides
tends to buckle and form wrinkles.

These gradient terms can be conveniently expressed as positive
definite quadratic forms,

Mcrv = ∇nT∇n, (6)

Mvel = ∇vT∇v. (7)

As noted above, curvature alone is not sufficient to resolve wrinkles
in adaptively remeshed cloth, as a coarse mesh is less likely to
buckle in the first place. Even when it does, it will be forced to do
so along the coarse mesh edges before refinement can take place,
producing an unrealistic result as shown in Figure 5. In order to allow
realistically fine wrinkles to appear, the remeshing scheme must
anticipate the buckling of the material before it happens. For this
purpose, we define a “compression tensor” Mcmp which describes
the expected minimum size of wrinkles in the mesh.

We determine Mcmp through the following heuristic argument. Con-
sider a strip of material of length ` with stretching and bending
stiffnesses ks and kb, clamped at both ends to be under a small com-
pressive strain ε. In the flat state, its elastic energy per unit length
is proportional to ksε2. If the strip buckles into a single arc, its
curvature is κ ∝

√
ε/`, leading to a bending energy on the order of

kbκ
2, or kbε/`2. Thus, the buckled state is energetically favorable

to the flat state when ε`2 > const, with the constant depending
on the ratio of stretching and bending stiffnesses. This reasoning
suggests that the size of the smallest possible wrinkles in a cloth
with compressive strain ε is proportional to 1/

√
ε, and so the sizing

field should be proportional to ε. To only consider compression, we
take the negative part of the Green strain,

Mcmp = (1−∇xT∇x)+. (8)

Here 1 is the 2× 2 identity matrix, and the operation (·)+ denotes
replacing each eigenvalue ξ of the argument with max(ξ, 0).

Finally, we also anticipate the cloth’s interaction with obstacles by
refining the mesh in regions close to obstacle geometry. For a given
face, consider one of its vertices, i, and find the nearest point pi on
any obstacle. We want to ensure that the face is not so large that that
it crosses pi’s tangent plane. If ϕi is the signed distance of a point
on the cloth face to said tangent plane, then for any other vertex j of
the face, we want ϕi(uj) = ϕi(ui)+∇ϕi ·uji > 0, for which it is
sufficient to require uTji(∇ϕi∇ϕTi )uji < ϕi(ui)

2. Therefore, for
each face, we define an obstacle-related sizing tensor at its vertices
i = 0, 1, 2 as

Mi
obs =

∇ϕi∇ϕTi
ϕi(ui)2

(9)

and define the tensor for the entire face as the average of the three
tensors at the vertices. A two-dimensional analogue of this procedure
is illustrated below: M1

obs is defined such that the element is split if
ϕ1(u2) is negative.

x1

x2
φ1 u(   )1

φ1 u(   )2

p1

To control the remeshing, we specify global bounds on change in
vertex normal ∆nmax, material compression cmax, and velocity
difference ∆vmax across any edge. We refer to these as dynamical
remeshing criteria, as they relate to the physical behavior of the
material, in contrast with the geometrical criteria we later introduce
regarding the shapes and sizes of the faces themselves. First, we
define a preliminary sizing field

M̂ =
Mcrv

∆n2
max

+
Mcmp

c2max

+
Mvel

∆v2max

+ Mobs. (10)

This has the property that for any edge ij, the condition uTijM̂uij ≤
1 guarantees that the dynamical criteria are satisfied.

However, simply using M̂ would allow a flat sheet of material at rest
to have arbitrarily large faces, and conversely, a sharp crease would
result in arbitrarily small faces. Therefore, we also specify geomet-
rical criteria in terms of the minimum and maximum edge lengths
`min and `max, and a minimum aspect ratio αmin ∈ [0, 1]. These
serve to prevent the faces from becoming undesirably large, small,
or skinny. Rather than enforcing these through additional remeshing
constraints that may conflict with the effect of the dynamical criteria,
we directly modify the sizing field to comply with the geometrical
criteria. Let the eigendecomposition of the preliminary sizing field
be M̂ = QΛ̂QT , with eigenvalue matrix Λ̂ = diag(λ̂1, λ̂2). We
clamp the eigenvalues to the range [`−2

max, `
−2
min], and further clamp

the smaller one to be at least α2
min times the larger. In other words,

we set

λ̃i = clamp(λ̂i, [`
−2
max, `

−2
min]), (11)

λ̃max = max(λ̃1, λ̃2), (12)

λi = max(λ̃i, α
2
minλ̃max), (13)

and define the final sizing field as M = QΛQT with eigenvalue
matrix Λ = diag(λ1, λ2). If isotropic elements are desired, one
can set αmin = 1 in this step.

Sizing at seam vertices. At seam vertices, the question arises of
how to perform area-weighted averaging of the sizing field between
faces that are disconnected in material space. We construct a single
tangent space for all the vertices associated with the same world-
space position, by transforming all the adjacent faces so that they
line up along the seam edges. For vertices created by edge splits,
this is accomplished by a rotation. However, seam vertices in the
original input may not be flat, meaning that their incident face angles
do not add up to 2π. We linearly scale these angles to flatten the
vertex, as shown below.

Material space Tangent space

Having constructed a common tangent space, we take the sizing
tensors at faces incident to all colocated vertices and rotate them to
this tangent space before averaging. When evaluating the size of an
edge, we rotate the vertex’s averaged tensor back out of the tangent
space into the material-space neighborhood of the vertex to obtain
the M for the edge size formula (1).

Handling interpenetrations. Each of the three remeshing opera-
tions discontinuously changes the cloth geometry, and so can cause
the cloth to penetrate obstacles or itself. One could use collision de-
tection while remeshing to avoid introducing interpenetrations in the
first place [Brochu and Bridson 2009; Brochu et al. 2012], or resolve
them at the end of remeshing, say by applying global intersection
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analysis [Baraff et al. 2003]. We take the latter strategy, but with
an approach described below that is much simpler and cheaper than
performing an expensive topological analysis. We found that this
simpler approach is adequate for our problem because the changes
in geometry produced by remeshing tend to be small and roughly in
the normal direction of the surface.

The material-space coordinates give us a one-to-one correspondence
between points on the mesh before remeshing, Mold, and after, M .
Knowing that Mold was free of interpenetrations, if a face j in M
intersects an obstacle, it can only be because points on the face were
moved towards the obstacle by a remeshing operation, so we merely
need to move it back to where it “came from”. Specifically, we find
the midpoint x of the line segment common to face j and the face of
the obstacle it intersects, determine its displacement ∆x = x−xold
relative to its position before remeshing, and move the face along
−∆x until the faces no longer intersect. The triangle is moved by
moving its vertices weighted by the barycentric coordinates of x.
We can do the same for two interpenetrating cloth faces, choosing
∆x as the change in the relative positions of the now-coincident
points on the two faces. There will in general be multiple pairs of
interpenetrations; we treat them simultaneously by treating their
required translations along the respective −∆x as constraints and
solving them using impact zones [Harmon et al. 2008].

5 Robust Strain Limiting on Irregular Meshes

Existing strain-limiting methods use solvers based on Jacobi or
Gauss-Seidel iterations. While these types of solvers work well for
small-to-moderate sized systems, they converge slowly for larger
ones. The slow convergence for large systems is a well-known
limitation of Jacobi and Gauss-Seidel solvers which require many
iterations to propagate information from one end of the mesh to
another. We have also observed that these solvers become unreliable
and difficult to keep stable when applied to our highly irregular
and anisotropic meshes. This behavior occurs because a single
Jacobi step applied to one face can drastically change the geometry
of nearby faces if they are much smaller in size, as illustrated in
Figure 6.

Instead, we pose the strain limiting problem as a nonlinearly con-
strained optimization problem. Given a triangle mesh with vertices
at current positions x̂i, we seek new positions xi closest to their
current positions, such that the strains of all faces lie within the
user-specified strain limits [εmin, εmax]. In this form, the problem
can be solved using standard techniques for constrained optimiza-
tion. We use the augmented Lagrangian method for its combination
of generality and simplicity: in particular, it can handle nonlinear
and non-convex inequality constraints, and can be applied without
evaluation of higher-order derivatives of the objective and constraint
functions.

We perform strain limiting once at every time step before performing
collision resolution. After the new vertex positions are computed,
we update the velocities using the change in positions,

vi ← vi + (xi − x̂i)/∆t. (14)

Figure 6: A failure of Jacobi iterations for strain limiting. The large
face is initially compressed by a small amount, but enlarging it to its
rest size inverts an adjacent face.

Figure 7 compares the behavior of our approach and a Jacobi solver
for enforcing strain limits on a heavily deformed high-resolution
mesh. Both methods can easily remove compressive strain by in-
troducing high-frequency out-of-plane wrinkles, but tensile strain
requires a low-frequency response at which Jacobi iterations per-
form poorly. The augmented Lagrangian method, on the other hand,
rapidly drives both compressive and tensile face strains close to the
strain limits, and soon terminates.

5.1 The Augmented Lagrangian Method

For completeness, we briefly review the augmented Lagrangian
method in general form here. A detailed analysis can be found in
the text by Nocedal and Wright [2006, chapter 17.4].

Consider an inequality-constrained optimization problem of the form

min f(x) s.t. g(x) ≤ 0 (15)

where f : Rn → R is the objective function on an n-dimensional
domain, and g : Rn → Rm is a vector-valued function representing
m constraints. We can write this equivalently as

min f(x) s.t. ĝ(x, s) = 0, (16)

where ĝ(x, s) = g(x) + s, with s ∈ Rm+ being nonnegative slack
variables. The augmented Lagrangian method replaces the con-
straints with a combination of Lagrange multipliers and penalty
functions, defining the augmented Lagrangian as the function

LA(x, s;λ, µ) = f(x) + λT ĝ(x, s) +
µ

2
‖ĝ(x, s)‖2. (17)

Here λ ∈ Rm and µ ∈ R are parameters, λ in particular acting as
an estimate of the Lagrange multipliers. The method proceeds by
alternating between two steps:

1. Update x and s by minimizing LA for fixed λ and µ.
2. Update λ via the first-order update rule

λ← λ+ µĝ(x, s). (18)

It can be shown that for large enough µ these iterations converge,
with λ approaching the true Lagrange multipliers and x approaching
the constrained solution. We take µ = 103, which we found to be
adequate in practice.

In our implementation, we perform an additional simplification. We
eliminate s as a variable, replacing it with its optimal value, s∗ =
max(−g(x)− λ/µ, 0) the maximum being taken componentwise.
After some algebra, this reduces the augmented Lagrangian to

LA(x;λ, µ) = f(x) +
µ

2
‖g̃(x)‖2 − ‖λ‖

2

2µ
, (19)

and the update rule to

λ← µg̃(x), (20)

where the penalty function g̃ is given by

g̃(x) = max(g(x) + λ/µ, 0). (21)

The minimization of the simplified augmented Lagrangian is subject
to no constraints, and can be performed using standard techniques
for unconstrained optimization. The derivation of these equations is
given in this paper’s supplementary material.
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Figure 7: (left) We take a square mesh of over 20k faces and stretch one side to 1.5× its rest length and compress the opposite side to 0.5×,
then apply isotropic strain limits of [−5%, 5%] using (middle top) Jacobi iterations and (middle bottom) the augmented Lagrangian method.
Intermediate results are shown with faces colored according to their worst absolute strain. (right) The distribution of face strains over time is
visualized, with the limits [−5%, 5%] overlaid in red.

5.2 Strain Limiting

The application to strain limiting is straightforward. Our objective
function is simply the sum of mass-weighted squared displacements
of the vertices,

f(x) =
1

2

∑
vertex i

mi

∥∥xi − x̂i
∥∥2. (22)

Assuming isotropic strain limits, we have for each face j four scalar
constraints, namely upper and lower bounds on the two principal
strains:

gjα,lower(x) = wj(εmin − εjα(x)) (23)
gjα,upper(x) = wj(εjα(x)− εmax) (24)

where α = 1, 2 indexes over the two principal strains. We take the
weight wj to be the square root of the material-space area of the
face, as this gives better conditioning. The principal strains εjα are
determined as one less than the singular values of the deformation
gradient F = ∇x, computed using the finite element basis matrix.

To minimize LA as defined in (19), we may use any unconstrained
nonlinear optimization routine. The nonlinear conjugate gradient
method and the L-BFGS algorithm are good choices, as they do
not require the full Hessian of the objective (in our case, the aug-
mented Lagrangian); in our experiments using the ALGLIB numerical
analysis library,7 the nonlinear conjugate gradient method was less
expensive. Both the above methods require the first derivative to be
provided analytically. This involves the first derivatives of the face
strains εjα with respect to the vertex positions x; equivalently, we
require the first derivatives of the singular values of the deformation
gradient F.

These derivatives can be computed from two facts. First, the defor-
mation gradient is linear in the vertex positions x. In particular, it is
given by

F = X∆β, (25)

where X = [x0 x1 x2] contains the positions of the face’s vertices,
∆ is the 3× 2 matrix which maps X to X∆ = [x1−x0 x2−x0],
and β is the finite element basis matrix for the face. Second, if
the singular value decomposition of F is F = UDVT , then the
derivatives of its kth singular value with respect to the entries of F
is given by [Papadopoulo and Lourakis 2000]

∂dk
∂fij

= uikvjk. (26)

7Sergey Bochkanov and Vladimir Bystritsky, http://www.alglib.net/

Combining these facts, we find that the gradient of dk with respect
to x` is

∇x`dk = (∆`·βV·k)U·k, (27)

where Ai· and A·j denote the ith row and jth column of a matrix
A. Again, the full derivation is given in the supplementary material.
With this, we can compute the derivatives of face strains with respect
to any incident vertex.

In the above discussion, we have treated only the case of isotropic
strain limiting. If coordinate-aligned (componentwise) strain lim-
its are desired, as in some previous work [Goldenthal et al. 2007;
Thomaszewski et al. 2009], the limits can be applied to the diagonal
entries of the Green strain G = FTF − 1 instead. Using equa-
tion (25), one can directly differentiate G to find the corresponding
gradients.

6 Results and Discussion

Figure 2 shows an example of a 1 m×1 m square piece of cloth inter-
acting with a moving sphere. A uniform high-resolution mesh with
no edge longer than 10 mm, shown in (a), has 65.5k faces and takes
over a minute of computation time per 25 Hz frame. For our adaptive
anisotropic remeshing scheme, shown in (b), we set `min = 10 mm,
`max = 200 mm, and αmin = 0.1. The number of faces in the mesh
varies from just 128 to 25.4k over the course of the simulation. This
simulation runs seven times faster, taking an average of 9 seconds
per frame. Disabling anisotropy by setting αmin = 1, as in (c),
gives a more uniform mesh, but with excessive refinement along
long wrinkles. We also generated a medium-resolution mesh with a
similar number of faces as the average of the adaptive anisotropic
mesh. This took 7.6 seconds per frame, but shows visibly coarser
detail and does not match the high-resolution behavior as well as the
adaptively remeshed simulation does.

Detailed numbers for the above and other examples are reported in
Table 1. Full animated results are shown in the supplementary video.

To illustrate that remeshing can handle wrinkles that move contin-
uously across the material, we show in Figure 8 a simulation of
a 3 m × 2 m flag in a constant 10 m/s wind field [Wejchert and
Haumann 1991]. The “waves” in the flag move unimpeded across
the length of the material while the mesh dynamically adapts to their
motion.

Figure 9 shows a cloth sleeve over a pair of cylinders connected by a
ball joint. The cloth exhibits a characteristic diamond-shaped buck-
ling pattern when the joint is bent. Remeshing automatically refines
and coarsens the mesh as its configuration changes. Anisotropic
meshing allows fine resolution in the circumferential direction with-
out needless perpendicular refinement.
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Name Figure Faces Time per frame (seconds)
Input Mean Integration Strain lim. Collision Remeshing Total

Kick 1 884 37,627 13.055 14.075 22.300 0.551 49.980
Sphere – high-res 2(a) 65,536 34.861 25.36 4.894 65.116

– anisotropic 2(b) 4 11,313 4.077 3.557 1.222 0.177 9.033
– isotropic 2(c) 4 30,325 14.731 11.177 2.608 0.549 29.064
– average 2(d) 11,319 4.481 2.469 0.630 7.580

Flag 8 97 11,710 3.103 3.559 1.353 0.428 8.443
Cylinders 9 32 5,267 0.684 0.625 0.455 0.050 1.814
Blue dress 10(a) 112 13,149 4.028 3.656 3.811 0.196 11.691
Yellow dress 10(b) 428 22,785 10.075 6.997 5.396 0.340 22.809

Table 1: Performance timings for all our examples. These were collected on a quad-core 3.30 GHz Intel Core i5 CPU with 3.75 GB RAM.
Disk I/O and rendering times are not included in the total. Most examples used ∆nmax = 0.15, ∆vmax = 0.7 m/s, cmax = 7 × 10−2,
(`min, `max) = (15 mm, 200 mm), αmin = 0.1.

Images copyright Rahul Narain, Armin Samii, and James F. O’Brien.

Figure 8: An adaptively remeshed flag flapping in the wind.

We show three examples of garments worn by animated characters
in Figures 1 and 10. The mannequins have rigid parts and are driven
by motion capture data from [Zordan and Van Der Horst 2003]. The
blue dress worn by the female is composed of five panels illustrated
in Figure 3, and the yellow dress has eleven panels. The male’s
pants and t-shirt are composed of four panels each, and his vest
six panels. The fine wrinkles and long folds in the garments show
visually significant dynamic motion that cannot easily be captured
in a separate detail model. The anisotropic nature of our meshes
also causes edges to tend to align parallel to such features, which
generally improves the appearance of the rendered images.

As Table 1 shows, the cost of remeshing itself is negligible compared
to the rest of the simulation. In all of our examples, it accounts for
between 1% and 5% of the total computation time.

Apart from performance, another significant benefit of adaptive
refinement is ease of use: it frees the animator from concerns of
choosing the right resolution of the simulation mesh that will run
quickly while capturing all the desired detail. In fact, all of our
results were created from extremely coarse input meshes containing
only a few hundred faces.

All of the examples shown use our new strain limiting technique, as
Jacobi-style iterations simply do not converge on our highly nonuni-
form meshes. We applied isotropic strain limits of [−10%, 10%] on
all examples. Our method works equally well on tighter strain limits.
In particular, when dressing one of our mannequins we kinematically
stretch the garment around the figure and then apply strain limiting
with both strain limits set to zero. This process brings the input
mesh as close as possible to an initial unstretched configuration, and
prevents rapid transient motion at the beginning of the simulation.

As noted previously, we are using the constitutive model and mea-
sured parameters published by Wang et al. [2011]. We have found
that the appearance of cloth is significantly improved with this model
compared to simple isotropic elastic models with ad hoc parameters.
The pants, t-shirt, and vest in Figure 1 use materials “11oz Black

Images copyright Rahul Narain, Armin Samii, and James F. O’Brien.

Figure 9: Wrinkles appear and disappear as a pair of connected
cylinders bend and straighten.

Denim,” “Gray Interlock,” and “Camel Ponte Roma” respectively;
the sheet in Figure 2 uses a modified “Gray Interlock” with 5 times
the density and stiffness; the flag in Figure 8 uses “Camel Ponte
Roma;” and the dresses in Figure 10 use (a) modified “Navy Sparkle
Sweat” with 1/10th the bending stiffness, and (b) “Gray Interlock.”
While these measured data and data from other sources [Volino et al.
2009; Miguel et al. 2012] are a great resource, further work remains
to be done for developing comprehensive constiuitive models for
cloth. For example, the denim material in Figure 1 bends and creases
in a way that is fairly consistent with denim, but its dynamic motion
appears more consistent with a lighter material. Measurements of
properties, such as the internal damping of denim, would likely
improve the realism for that example.

In summary, we have presented a technique for dynamically refining
a triangular finite element mesh, producing anisotropic elements
with controllable size and shape to adaptively resolve detail in cloth
simulations. The remeshing scheme preserves dynamical detail by
anticipating the buckling of the material and its interaction with
obstacles. We have also described an optimization-based approach
that efficiently performs strain limiting on large and irregular meshes
using the augmented Lagrangian method.

6.1 Limitations

In scenarios where the vertex velocities are smoothly varying, for
example in a uniform rotation of the entire mesh, the velocity dif-
ference term could cause slightly more refinement of the mesh than
strictly necessary. However, this conservative approach preserves
subtle waves in the cloth for general motions.

For most of the parameters controlling the remeshing criteria, the
same values work well for many different materials. However, the
compression criterion cmax is quite material-dependent: a material
with high bending stiffness does not need to be refined as much
under compression. At present, we have not worked out the exact re-
lationship between the stretching and bending stiffnesses that should
govern this parameter; doing so seems particularly difficult for the
realistic nonlinear material models we use. A related limitation is
that if a material is modeled as exactly incompressible, the compres-
sive Green strain will always be zero, and the compression criterion
will not be useful to predict buckling.
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(a) (b)
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Figure 10: Two different dresses simulated on a dancing character.

Working with dynamic data structures does make efficient imple-
mentation harder compared to working with static structures. For
example, we do not attempt to maintain a cache-friendly memory
layout of the mesh. However, we think the benefits from adaptive
data structures justify the added complexity, and believe that more
efficient implementation is still feasible with further work.

Our current strain limiting approach is not aware of self-collision
constraints, which are left to the subsequent collision resolution pro-
cedure. Collision resolution may thus cause the cloth to violate the
strain limits in colliding regions. In particular, this causes difficulties
in scenarios like a tightly stretched knot. We believe this limitation
could be overcome by incorporating additional constraints in the
strain limiting optimization.
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MÜLLER, M., AND GROSS, M. 2004. Interactive virtual materials.
In Proc. Graphics Interface 2004, Canadian Human-Computer
Communications Society, GI ’04, 239–246.

NEALEN, A., MLLER, M., KEISER, R., BOXERMAN, E., AND
CARLSON, M. 2006. Physically based deformable models in
computer graphics. Computer Graphics Forum 25, 4, 809–836.

NOCEDAL, J., AND WRIGHT, S. J. 2006. Numerical Optimization.
Springer Series in Operations Research and Financial Engineer-
ing. Springer New York.

PAPADOPOULO, T., AND LOURAKIS, M. 2000. Estimating the
Jacobian of the singular value decomposition: Theory and appli-
cations. In Computer Vision - ECCV 2000, vol. 1842 of Lecture
Notes in Computer Science. 554–570.

POPA, T., ZHOU, Q., BRADLEY, D., KRAEVOY, V., FU, H., SHEF-
FER, A., AND HEIDRICH, W. 2009. Wrinkling captured garments
using spacetime datadriven deformation. Computer Graphics 28,
2.
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