Computational Aesthetics

CS 294-69 Final Project

Armin Samii Tim Althoff

Roadblocks

Training Data

- Noisy
- Repetitions
- Hard to obtain
- Parameter Learning
 - Predict parameters using regression

- Sequence Learning
 - Feature-dependence

(avoid repeating same sequence)

- Training a good model
- User Interface
 - Simplicity
 - Facilitate learning

- Feature Extraction
 - Must be done for each iteration

- Feature Extraction
 - Must be done for each iteration
 - Must be fast

- Feature Extraction
 - Must be done for each iteration
 - Must be fast
 - We work on small (100x100) images

- Feature Extraction
 - Must be done for each iteration
 - Must be fast
 - We work on small (100x100) images
 - Features must be simple enough to be detected in thumbnails

- Must be done for each iteration
 - Must be fast
 - We work on small (100x100) images
 - Features must be simple enough to be detected in thumbnails
- Features we use
 - Color-based

- Must be done for each iteration
 - Must be fast
 - We work on small (100x100) images
 - Features must be simple enough to be detected in thumbnails
- Features we use
 - Color-based (e.g. histograms, contrast, etc.)

- Must be done for each iteration
 - Must be fast
 - We work on small (100x100) images
 - Features must be simple enough to be detected in thumbnails
- Features we use
 - Color-based (e.g. histograms, contrast, etc.)
 - Simple Haar features for face detection

- Must be done for each iteration
 - Must be fast
 - We work on small (100x100) images
 - Features must be simple enough to be detected in thumbnails
- Features we use
 - Color-based (e.g. histograms, contrast, etc.)
 - Simple Haar features for face detection (distinguish between portraits, group shots, etc.)

- Must be done for each iteration
 - Must be fast
 - We work on small (100x100) images
 - Features must be simple enough to be detected in thumbnails
- Features we use (~30 total)
 - Color-based (e.g. histograms, contrast, etc.)
 - Simple Haar features for face detection (distinguish between portraits, group shots, etc.)

Parameter learning

- P(adjustment strength | features, adjustment)
- Regression techniques

Sequence Learning

- P(next adjustment(s) | features, previous adjustments)
- N-grams + features

Parameter learning

- P(adjustment strength | features, adjustment)
- Regression techniques

- Sequence Learning
- P(next adjustment(s) | features, previous adjustments)
- N-grams + features

Parameter learning

- P(adjustment strength | features, adjustment)
- Regression techniques:
 - Linear
 - Ridge
 - Lasso
 - Lars
 - ElasticNet
 - Gaussian Procress

 $0.5 * ||Xw - y||_{2}^{2} + \alpha * \rho * ||w||_{1} + \alpha * (1 - \rho) * 0.5 * ||w||_{2}^{2}$

Sequence Learning

- P(next adjustment(s) | features, previous adjustments)
 - \rightarrow "Feature-augmented n-grams"
- n-gram: sequence of n items from a given sequence
- n-gram model \rightarrow (n 1)-order Markov model
- Feature augmentation

$$\begin{split} P(adj_i | adj_{i-1}, adj_{i-2}, feat_{i-1}) \propto \\ P(feat_{i-1} | adj_i, adj_{i-1}, adj_{i-2}) \cdot P(adj_i | adj_{i-1}, adj_{i-2}) \\ \\ \end{split}$$
 Modelled by GMM Tri-gram

User interface

Original image

Show user each step in sequence

Display

Adustment #3: Contrast adjusted by 0.238743

Results: Parameter learning

Results: Sequence learning

Future Work

- More features
- Local edits
 - Treat skin separately
 - Gradients (e.g. horizon)
 - Foreground/background separation
- Style modeling
- User personalization
 - a*GeneralModel + (1-a)*UserModel
- User study

