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Figure 1. Step-by-step suggestions are presented to show the user how to inir@retograph.

Abstract 1 Introduction

. _ Applications such as Adobe Photoshop Lightrdand darktable
We develop a novel method to present a novice photographer with provide users with many options to adjust a photograph after it is
expert suggestions on how to improve a selected photograph. Byiaken. For novice photographers, these options may be cryptic and
modeling an expert's artistic decision process, we are able to predictit may pe difficult to know which adjustments will improve an pho-
the expert's decisions on a new photograph. We use an Iterativeiograph. Even experienced photographers may have trouble decid-
Learning Approach (ILA) in which we learn how to make a series ing how to adjust a photograph, similar to “writer’s block.”
of simple enhancements. First, we train a collection of independent
regression models, each of which learns a single type of photographOne option is to explore the various available adjustments until
adjustment (e.g. change in contrast). We then train a sequencesomething acceptable is found, but this method is not efficient given
model, which chooses the next adjustment to be made. This methodthe dozens of available choices. Another is to apply preset adjust-
allows the novice user to reason about each of the ILA's decisions. ments provided by the application developers, but the presets of-
We show that our method lends itself to a friendly user interface fered in most applications are not content-dependent and there are
to facilitate human understanding. Finally, we present examples too many to efficiently explore. A preset which improves one pho-
showing that our method is comparable to recent work. tograph may look strange on another, even if the two photographs
are similar. Further, the presets are not ordered in any meaningful
way, so a good preset may be hard to find in the large list available.

CR Categories: 1.3.7 [Computer Graphics]: Applications—Photo i . .
Editing'eg I [ pu phics]: Applicati With these problems in mind, researchers have developed auto-

matic retouching tools. However, unlike with presets, these meth-
ods manipulate the pixels directly and return a compressed image,
Keywords: Computational Photography, Machine Learning, User so the user cannot later modify the parameters without more loss of
Interfaces data (“invasive editing”). Further, these methods are a “black box”
which do not provide a photographer with insight into how the final
photograph was obtained.
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. We solve these shortcomings with an Iterative Learning Approach
fe-mail:althoff@eecs.berkeley.edu

(ILA). This method presents the photographer with options to im-
prove a given photograph. We choose a meaningful type of adjust-
ment based on the image content and present the user with each
step of our decision process. This gives the user the opportunity to
learn about photograph enhancement in the process. Each adjust-
ment we make is equivalent to one adjustment available in Adobe
Lightroom, so they can intuitively reason about each decision and
replicate it. An overview of the framework is displayed in Fig@re

One example sequence is shown in Figlire

Ihttp://www.adobe.com/products/photoshoplightroom
2http://www.darktable.org
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Figure 2: The Iterative Learning Approach. Given an input image, we repeatedbulate the features, determine which adjustment to
apply, and determine the strength of that adjustment. The user is showesthieof each iteration.

We show that our results are similar to the adjustments made by publically-available dataset containing 5000 photographs, each one
expert photographers and comparable to “black-box” approaches with five corresponding adjustments by experienced photographers
[Bychkovsky et al. 201]1 They are able to train a regression based
on the differences in feature-space of the input and output image
2 Related Work pairs. Unfortunately, the individual adjustments made by the pho-
tographers are not available, which motivates us to use our own

Our work can be segmented into two categories: image quality . . . .
enhancement and machine learning algorithms. We present andataset of adjustment-history metadata stored in Adobe Lightroom.

overview of the literature in these fields.
2.2 Machine Learning

2.1 Image Quality Enhancement
Our approach uses statistical machine learning techniques to model

Many quality improvement methods require multiple images the expert artist's knowledge and experience. A model based on
to fill in missing data, such as optimal relighting for show- n-grams Brown et al. 1992 Chen and Goodman 19P& used to
ing detail [Akers et al. 2003Moreno-Noguer et al. 20Q5display- predict a good adjustment sequence and their parameters are esti-
ing images with high dynamic rang€&dttal and Lischinski 2002 mated by regression techniques.
Durand and Dorsey 2002 and reducing noise in an image
[Petschnigg et al. 2004These methods have good results, but hav- Traditionally, sequence learning has been studied in computational
ing multiple images is not practical in many applications, including linguistics computational biology, communication theory, and data
ours. We also aim to subjectively improve the aesthetics of a pho- compression. A well understood model in this context isthe
tograph (e.g. stylizing with false vignetting), instead of only objec- gram model Brown et al. 1992 In statistical natural language
tively improving the quality of an image (e.g. noise reduction). processing, am-gram is a contiguous sequencerofitems (e.g.

) ] phonemes, syllables, letters, words) from a given sequence of text
Berthouzozet. al. develop a method for improving both the ob-  or speech. Am-gram model is a probabilistic language model that
jective quality and subjective aesthetics of an image based on usercan predict the next item in such a sequence based on statistical
defined macrosE{_erthouzoz_ et al. 2031 This method shpws good properties ofn-grams. Mathematically, an-gram models pre-
results for applying complicated styles (such as adding snow) to dicts ;; based ONz; _(n_1),---,i—1. In probability terms, this
a photograph. Unfortu_nately, each macro needs to be mz_anuallyis P(x]%;(n_1y,---,2i—1). When used for language modeling,
trained by an expert artist that uses their framework. There is also thjs is equivalent to the independence assumption that each word
no automatic suggestion of types of macros - the user must dec'dedepends only on the last— 1 words. Thereforep-gram models
which style to apply. Although our method is not able to handle e ¢, — 1)-order Markov models that approximate the true under-
complicated local adjustments, it requires no manual training data |ying language. This assumption is important because it simplifies
from the user and automatically decides a style to apply. the problem of learning the language model from data.

Current methods for fully automatic photograph enhancement fo-
cus on obtaining a better resulting imadyghkovsky et al. 2011
Kang et al. 201D These approaches are black boxes: they do not
allow a novice photographer using the tool to understand how the
computer made its decision. Our approach arrives at a compara-
ble resulting image while showing the user intermediate decisions,

each of which can be reasoned about. Also, these methods only - "1 Good 1953Katz 1987 Ney et al. 199%or back-off mod-

e T o MSel Aement: s Kneser and Ney 1995 Some of these methods are equialnt
) : to assigning a prior distribution to the probabilities of thgrams

supports generic operators, such as synthetic vignetting and toneand using Bayesian inference to compute the resulting posterior
splitting. These methods are also “invasive” in that they work on ram probabilitiesChen and Goodman 19p6

compressed 8 bit/channel images rather than RAW formats, which 9 P

limits the amount of adjustments a user can make after obtaining Popular choices for regression techniques include Ordinary
the resulting image. Our method makes adjustments without any Least-Squares regression (OLSFu[1998, Ridge regression
loss of data by maintaining a cumulative list of settings to apply [Hoerl and Kennard 1970a Hoerl and Kennard 197Qb Lasso
onto the RAW file, so the user can adjust these settings after we [Tibshirani 199§ Elastic Net Pou and Hastie 2005 Least
present the ILAs result. Angle regression (LARS) Hfronetal. 2004 and Gaussian
Because of the lack of training data previously available, learn- Process —regression  (GPR) Williams and Rasmussen 1996
ing aesthetic adjustments was difficult. Kaely al. ask the user Rasmussen 2004 These techniques are presented in more detail
to make adjustments to a specific set of photographs to train their N Sections.2

model [Kang et al. 201D To enhance a new photograph, they per-

form a nearst-neighbor search on the image features and copy thez Training Data

adjustment parameters. This is not appropriate because it does not

adapt to the content in the image.

Naive n-gram models assign a probability of zero to previ-
ously unseem-grams. In practice, it is therefore necessary to
smooth the probability distributions by also assigning non-zero
probabilities to unseen words or-grams. Several smoothing
methods have been developed, from simple Lidstone smoothing
Lidstone 192Dto more sophisticated models, such as discounting

Adobe Lightroom maintains the history of adjustments applied to
Bychkovskyet. alrecently improved upon this work by creating a every photograph. Our code to extract this metadata is available



on our project websife We make the assumption that every adjust-
ment sequence in the photographer’s Lightroom metadata improves
the image. We explain the benefits of using each adjustment instead
of only looking at the original and final image.

square contrast metri€gli 199Q:
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While learning the strength of each adjustment, we treat each step

of the history as an independent training example. This helps the
training data in three ways: ease of access, quantity, and quality.
Note that these benefits are applicable specificallpamameter
learning not sequence learning (although it is equally easy to ob-
tain sequence learning data).

1. Easy to Obtain: Theoretically, we would be able to install
our feature extracter as a Adobe Lightroom Plugin on any ex-
pert photographer’'s computer. Without any added effort on
their part, we would extract all the features we need and add

where M and N specify the width and height of the image,
I;; is the CIE LAB luminosity of pixel(, j), and I is the
average luminosity.

Face Detection: The number of faces present and the per-
centage of the area that contains a face. These two features
theoretically should distinguish between portraits and group
shots. We use a set of Haar-like features from the OpenCV li-
brary Bradski 2000and sum the area of the resulting bound-
ing boxes. Note that this does not need to be recalculated at
each iteration, and thus can be calculated on the full-size im-

it to a master training set.
age.
. Quantity: We treat every photograph as an independent set
of single adjustments. A photograph with ten adjustments is 5
treated as ten separate photographs, each with a simple adjust-
ment to learn. The caveat here is that we have independentin our novel approach, we model the expert artist's knowledge and
models for each type of adjustment, and a single photograph experience using well-known techniques from statistical machine
is unlikely to have a data point for each of them. Still, because learning. As motivated in the introduction, we want to predict a
of the amount of data we can obtain, we will have sufficient good adjustment sequence and their parameters based on the ad-
data to train each model. justment history and current image features. We solve this problem
in two independent steps: first, we predict the next adjustment (se-
quence learning), and second, given this adjustment we predict the
optimal parameter for it (parameter learning).

Iterative Learning

. Quality: Each of our learning algorithms model a relatively
simple function compared to only using the initial and final
image, because this function is a single adjustment instead of a
complicated sequence of adjustments. Further, the most-used5 1S L .

adjustments (such as exposure correction) are trained very ac-=" equence Learning

ratel f the amount of availabl vailable. . - . .
curately because of the amount of available data available Intuitively, we are predicting the next adjustment by looking at past

The dataset we use is obtained from a single photographer. Thereadjustments and the current content of the photograph. For exam-
are 2237 adjustments across 572 photographs. This means that sé2le, based on the experience gained from the expert artist (that we
quence learning (Sectidh1) contains 572 training examples, and  reflect in our model) we would usually change contrast after ad-
all of the paramater learning models combined contain 2237 train- justing exposure, but given that a particular photograph already has
ing examp|es_ More common adjustments have more training ex- hlgh contrast we may want to add a increase saturation instead.
amples. For example, exposure has 544 examples, contrast adjus
ment has 169 examples, and adding fill light had 80 examples. We
ignore adjustments with fewer than 20 examples. For now, we also
ignore any local adjustments or multi-parameter adjustments (such
as a gradient filter or cropping), though it is planned for future work.

uch like previous work used-gram models for language mod-
eling, i.e. how sentences are modeled by sequences of words, we
use them to learn the “language” of expert artists, i.e. how styles
are modeled by sequences of photographic adjustments. To do this,
it is necessary to extend the ¢ 1)-order Markov model to satisfy

our requirements. If we compute angram model based on a cor-
pus provided by an expert artist, we would always suggest the same
adjustments for the photograph, irrespective of its content.

The ILA requires features to be recalculated at every iteration. Do- However, we want to take the content of the photograph into ac-
ing so on the full-size image would severely limit the number of count, e.g. decreasing exposure for an overexposed photoguaph
features that can be efficiently calculated. We thus choose featuresncreasing contrast for a correctly exposed but low-contrast pho-
that can be calculated on the image thumbnail; fine-scale structureiograph. For these reasons, we developed a novel model that in-
is ignored. We calculate the following features at each iteration:  ¢jyde the current image features of the photograph. We call this a
feature-augmented-gram model. Graphically, the model is speci-
fied in Figure3, whereA,, . .., Ay is the adjustment sequence and
Fy, ..., Fy are the image features. In this notation, e&glis the
image feature vector before applying adjustméntThe presented
model is based on a bigram model (i.e. a first-order Markov model).
However, the following derivation can easily be adapted to higher
order models as indicated by the dashed arrows in Figure

4 Features

e Histograms. Experimentation has shown that the best set of
channels to include in our feature vector are the Hue and Sat-
uration channels in HSV space and the Luminosity channel in
CIE LAB space. We split these three channels into 15 bins
each.

Clipped values: The percentage of fully overexposed and un-

derexposed pixels. ] o
5.1.1 Mathematical Derivation
e Averageluminosity: The mean luminosity value in CIE LAB
space. Note that Figure8 is a completely observed graphical model with
the factorization

e Global Contrast: The global contrast using the root mean N

p{A}AFY) = p(4) - ]

=2

p(Ai A1) - [ p(FilAd)

Shttp://www.artoonie.com/projects/ila/lightroom-patsenl ey
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Figure 3: Graphical model for sequence learning, where
Aiq,...,An is the adjustment sequence ahy, ..., Fy are the
image features. The solid arrows describe the first-order Markov
model (based on bigram model) and including the dashed arrow
leads to a second-order Markov model (based on trigram model).

where multinomial random variable$; are the adjustments, con-
tinuous random variables; are the image features, antf are
indicator variables capturing the state of the multinomial random
variable @* = 1if A; = k andA¥ = 0 otherwise). We use the
following definition for our parameters:
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whered”, m = 1, >, ar = 1, andN (pe, Xi) is @ multivariate
Gaussian density with parameters andX,. Now, we can write
our factorization above as
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In this form, the Maximum Likelihood estimates can be obtained
by
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If we take a closer look at;;, we can see how they relate to the
concept ofn-grams (withn = 2 in this case):
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which is the empirical probability of the-gram model based on
n-gram counts. Note that the presented derivation can easily be
adapted to higher ordergram models, as well as adapted to emis-
sion probabilitie(F;|A; = k) that are not Gaussian but, for ex-
ample, mixtures of Gaussians. However, in practice one needs to be
careful with more complex models if the amount of data provided
is comparably small because of overfitting. The performance of the
presented model is evaluated in Secffoh

5.2 Parameter Learning

We want to predict the optimal parameter for a given adjustment
based on image features (e.g. the amount by which we want to in-
crease exposure). Mathematically, this is a simple regression prob-
lem for which regression techniques like Ordinary Least-Squares
regression (OLS) can be used. However, based on the features
described in Sectiod, for each adjustment, only a subset of our
features is correlated with the adjustment strength. For example,
to find the right exposure it could suffice to only look at the lu-
minosity histogram whereas for changing vibrance, the color his-
togram would be important instead. For this reason, we use regres-
sion methods that, in addition to fitting a reasonable linear model,
assume some sparsity of the parameter vegtoHere, sparsity
refers to a lot of components being small or even zero which cor-
respond to the feature selection task we described above. In the
following, we go into more detail of the regression task at hand
and describe techniques that lead to sparse linear models. We also
explored non-linear models such as neural networks, Gaussian pro-
cess regression, and support vector regression. In our expésime
while being computationally more expensive, we did not observer
any improvement in performance.

5.2.1 Relevant Regression Techniques

Mathematically, our parametere learning task is a simple regression
problem where the dependent variablés the parameter that we
are predicting (the response) and= (zi1,...,zip), i =1,...,n

are thep-dimensional feature vectors. In linear regression, data are
modeled using linear functions, and unknown model parameters are
estimated from the data. In particular, the linear regression problem
can be written ag = X3 + ¢, where y is am-vector of random
responses, X anx p design matrix containing the stacked feature
vectors,3 ap-vector of parameters or weights, andnn-vector of

iid random error Fu 1998.

Ordinary Least-Squares regression (OLS) minimizes the Resid-
ual Sum of Squares (RSS) between the observed responses in the
dataset, and the responses predicted by the linear approximation

B = min ly - XB>
which yields an unbiased estimator

B=(X'X)"'X"y.
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Figure 4: The current interface. As the user moves the slider to the right, sucedtsiations are displayed. The text above the slider
describes the adjustment that brought the user from the previous stae do¢hshown.

one key assumption is that the design matfix must have sparse represenationddu and Hastie 20Q5 The objective func-
full column rank p.  For this property to hold it is nec- tion for the Elastic Net is:

essary (but not sufficient) that > p. If this condi- 5. 9 9

tion fails this is called the multicollinearity in the regres- ﬂ_mBmHy_Xﬂ‘b+O‘Hﬁ”2+7”ﬂ”1'

sors. Methods for fitting linear models with multicollinearity

have been developed'ibshirani.lg% Hoerl and Kenna.lr.d 1970a least Angle Regression (LARSEfron et al. 2008is a forward se-

Efron et al. 2004 Zou and Hastie 20QSbased on additional as-  |ection algorithm or a “forward stepwise regression”. It was shown

sumptions such as sparsity of the parameter vector.  De- that a simple modification of this variant of linear regression imple-

tailed discussions can be found itdderl and _Kennard 1970a ments the Lasso in a very efficient way.

Hoerl and Kennard 197(Qb We use these techniques because we

expect the adjustment parameter to depend only on a small subsewe also explored Gaussian Process Regression (GPR)

of features such that sparsity constraints should help in finding the [Williams and Rasmussen 1996Rasmussen 2004which is a

right paramaters. The rest of this section presents some of thesepowerful but computationally more expensive method where

techniques in more detail. the prediction interpolates the observations, and the prediction
is probabilistic (Gaussian) so that one can compute empirical

ridge regressionHoerl and Kennard 1970amposes a penalty on  confidence intervals that can be used to refit the prediction in
the size of coefficients, i.e. the ridge coefficients minimize a penal- regions of interest.

ized residual sum of squares: . .
related work uses a subset of these regression techniques,

8= min |y —Xﬁ”% +a|\ﬁ\|§~ namely OLS, Lasso, GPR, and LARSBychkovsky et al. 2011
B Berthouzoz et al. 2011 We compare the prediction performance

) ] of the presented regression techniques in Seatian
here, a is a complexity parameter that controls thks-

regularization. The larger the value afthe greater the amount
of “shrinkage” and thus the coefficients become more robust to
collinearity.

6 User Interface

Our goal is to create an interface that allows the user to “ask an
the Lasso is a linear model that estimates sparse coefficientsexpert” for advice. Since our machine learning models have been
[Tibshirani 1996 It is useful in some contexts due to its tendency trained on data extracted from expert photographer’s Adobe Light-
to prefer solutions with fewer parameter values, effectively reduc- room image metadata, showing the decisions of our algorithm mod-
ing the number of variables upon which the given solution is de- €ls what an expert would advise. Although it is not our goal, this

pendent. Mathematically, it minimizes the residual sum of squares approach also allows a user to accept the ILA final result without

with L,-regularization: viewing the history. Further, it allows users to explore various ad-
justment options for creative inspiration, similar to Design Galleries
B =min ||y — XB|[3 + a8l [Marks et al. 199F This allows our approach to be used as both an

B automatic retouching tool and a tool to aid the creative process.

with « controlling the amount of regularization again. . . . .
Current interface Through our interface (Figurd), a novice

although the Lasso has shown success in many situations, it hagphotographer can get assistance manipulating an image by asking
been empirically observed that the prediction performance of the our trained model of an expert artist for help. Our current inter-
Lasso is dominated by ridge regression if there are high correlationsface allows users to view the adjustments made at each iteration.
between predictorsTjbshirani 1996 Therefore, the Elastic Net ~ The user can select an image and view the adjustment made at each
combines thel, penalty of ridge regression with thie; penalty timestep. If the result is acceptable, the user can apply the same
of the Lasso that essentially does variable selection and producesadjustment in Lightroom.
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Figure5: The planned interface. The History window shows the series of adjustimef®nological order, from bottom to top. After the
user chooses to get suggestions from the ILA (shown with a blue backbno the History window), a series of new adjustments will be
displayed (typeset in blue). The user can then click through each adjostmsee what was changed, or accept the final result and ignore
the intermediate steps.

Planned interface Although the current interface successfully pearsinA,,..., A;y;). Formally, we define accuracy as:

shows the user each decision of the ILA, it does not integrate well

with a photographer’s workflow. In light of this, we propose an in- N

terface with the same benefits but also integrated with Adobe Light- 1 A

room (see Figur®). This interface will display suggested adjust- Acc() = N ZLAi € {4, At}

ments in the History window of Adobe Lightroom. When the user =t

selects an option to get suggestions from the ILA, a series of sug-

gested adjustments is displayed. From there, the user can see hownder this definition ACC'(0) corresponds to the fraction of pre-

each iteration affects the image. dictions that are correctly made at the same point in the sequence
as in the ground truth.

7 Results
7.1.1 Proof of Concept

In this section, we present an evaluation of the proposed iterative

learning approach. We provide empirical results for sequence andTo evaluate our feature-augmentedyram model as well, we cre-
parameter learning as well as qualitative results. Because Light-ated an synthetic dataset containing 1000 adjustment sequences
room does not have an interface for using their adjustments, and(750 for training, 250 for testing) using the scitkit-learn package
they do not advertise the algorithms they use for each type of adjust-for machine learningRedregosa et al. 20[L1We tried to replicate
ment, we have implemented our best approximation of them. Since properties that we expect from our real dataset, i.e. we have 20
they are not equivalent to Lightroom’s adjustment, our feature vec- different adjustment possibilities and 20-dimensional features that
tors are not fully accurate. For example, the image we generate afterare modelled by “overlapping” multivariate Gaussians with a large
the adjustment "Exposure +1" is different than the one Lightroom standard deviations (we assume a very cluttered feature space). The
generates, so the feature vector is slightly different. Therefore, until adjustment sequences themselves were sampled from a first-order
we can use the same algorithm that Lightroom uses, our results onMarkov model with random transition parameters. In this case,
real-world data are accompanied with proof-of-concept results on we compare our proposed feature-augmentegtam model (for
synthetic datasets. n = 2,3 to different baselines, i.e. only using features to pre-
dict the next adjustment, using only thegram models (without
feature-dependence), and a random baseline as before. Wereompa
these methods for different lookaheads by averaging the accuracy
metric defined above over the 250 adjustment sequences for test-

To evaluate sequence learning, we used several adjustment seing. The other 750 sequences were used to estimate the parameters
quencesAy, ..., Ay from an expert artist and tried to predict the described in SectioB.1

next adjustment given previous adjustment steps and current image
features. Note that the adjustments do not always have to be in theThe results for this dataset are shown in FigereOur proposed

same or_der as given by ground truth.to p,“’duce good.results. If model outperforms all baselines showing that it can be beneficial

we predict an adjustment; but the artist did another adjustment 5 predict the next adjustment based on the adjustment history as
A; # A; then we still countd; as a true positives if the artist ap-  well as current image features. Given that this evaluation was per-
plied this adjustment at some later point in his adjustment sequenceformed on synthetic data, although the results look very promising,

Aiy1,..., An. Under this constraint, we measure the prediction it does not readily prove a good performance of our model on the

accuracy for varying “lookahead’ (i.e. looking whetherA; ap- real world dataset.

7.1 Sequence Learning



of determination-? [Menard 2000 MSE represents the amount

05 __Sequence Learning : — by which the predicted values differ from the quantities being esti-
) mated. Formally, it is the value of the squared deviations of the pre-
T TR Saiaie Sluial dictionsy; from the true valueg; (usually over an out-of-sample

test space):
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In the case of linear regression, the coefficient of determinafion
is the square of the sample correlation coefficient between the out-
comes and their predicted values. Also, its value can be seen as

Accuracy

o
N
T

b4 e -o bigram+feat the amount of variance explained by the data. Let agaioe the
o trigram-+feat values to be predicted; = £ >, y; their sample mean, angl
0.1f 4 :_: ‘:j‘at“re only |] the modelled or predicted values. Then, the coefficient of determi-
e pigram nation is defined by:
e e trigram
o—o random —\2
I e I SSit = > (i —9)%
Lookahead 7
SSerr = Dy =90’
Figure 6: Proof of concept for our feature-augmentedgram i
model. Our proposed model outperforms all baselines: only us- SS.
. A " ) 2 _ 1 err
ing features to predict the next adjustment, using onlyrtfggam ro= T 5S,0

models (without feature-dependence), and a random baseline. ) )
whereS S, is the total sum of squares (proportional to the sample

variance), and'S...- the residual sum of squares.

Sequence Learning

7.2.1 Proof of Concept
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-------------------------------------------------- 0. To prove the concept of sparse linear models for regression, we cre
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. .- LR B ated and evaluated on an synthetic dataset that has higher dimen-

] AR S S onuritl AN : . sionality than our current features but a and a low effective rank

o i : (as motivated in SectioB.2). We used the scitkit-learn package
o4l 4 : E"_‘Jram | for machine learningRedregosa et al. 20[Lo create a synthetic

g - fggrrgr”;m dataset that resembles some of the properties we expect our data
g4l e only exposure || to have. The dataset has 200 samples and 200 features. However,

o—o random the effective rank (the approximate number of singular vectors re-

quired to explain most of the input data by linear combinations) is
02p— : ' . only 20. This sparsity makes sense because we expect that for any
— given adjustment, the adjustment strength only depends on a small
0.1 '/‘/M 1 subset of features. Furthermore, we applied Gaussian noise with a

standard deviation of 3 to the output to create a more challenging re-
00— i + i gression problem. The results from comparing all presented regres-
Lookahead sion techniques on this dataset can be found in Figur€learly,
methods that enforce sparsity on the parameter vektike Lasso
(L1-penalty) outperform the rest. We expect these methods to work
even better on the real world data once we are able to transform the
image using Adobe Lighroom’s adjustments (as noted in the begin-
ning of this section).

ol
@

Figure 7: Results for sequence learning on the real-world dataset.
The bi- and trigram model consistently outperform the “always ex-
posure” baseline as well as the random baseline.

7.2.2 Real-world data
7.1.2 Real-world Data

The results on the real-world dataset are shown in FiQur®b-
Our real-world dataset contrains 270 adjustment sequences forserve that all regression techniques perform similarly. The tech-
training and 100 sequences for testing. We compare our non-niques involving a regularization of the parameter vegtaio not
feature-dependent-gram models to two baselines, one always pre- have an advantage here because the feature dimension is rather
dicting exposure adjustments (because this was the most commorsmall (51). Because we plan to use a lot more features in the future,
adjustment in our dataset), and another one doing random predic-we expect the regression techniques creating sparse linear models
tions (uniformly over all possible adjustments. The results can be to eventually outperform simpler techniques on real-world datasets
found in Figure?. The best:.-gram model (fom = 2) consistently as well.
outperforms the exposure-baseline as well as the random baseline.
For a lookahead of zero, the difference is about 16% accuracy. 7.3 Qualitative results

7.2 Parameter Learning Figure10 shows successful example outputs of our method. Each

of the examples displayed are chosen for illustration purposes from
We evaluated parameter learning using two common metrics in re- a sequence of five to fifteen adjustments. The first image (Fig-
gression analysis, the mean squared error (MSE) and the coefficienures10(a)10(c) slowly increases contrast and decreases exposure,
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Figure 8: Proof of concept for our sparse regression techniques Figure9: Results on our regression dataset. The suffix “CV” indi-

on synthetic data. The suffix “CV” indicates that the respective cates that the respective parameter was selected using cross valida-

parameter was selected using cross validation. Clearly, methods tion. One can observe that all regression techniques perform about

that enforce sparsity on the parameter vectirlike Lasso [1- the same. The techniques involving a regularization of the param-

penalty) outperform the rest. eter vector/s do not have an advantage here because the feature
dimension is rather small (51).

along with other minor adjustments in between. The second image
(Figures10(d)10(f)) iterates several times, slowly decreasing ex- 8 Future Work

posure and brightness, before adjusting the black level clipping and . . ) ) )
saturation, which greatly improves the aesthetics. We have just touched the surface in the field of Iterative Learning.

There are many potential directions that this research can go. We

. . . resent some of these below.
Figure 11 shows some failure cases for our system. Both images P

have lost data through either clipped highlights or clipped shadows.
The firstimage (Figure$l1(a}11(c) oscillates between the original ~ Style Modeling Through Clustering We need a way to group
image and a faded image. Each iteration attempts to fix the mistakesentire sequences together so that a training example that applies one
of the previous, but is unable to, and thus our system loops throughstyle (such as black-and-white) does not mix with one that applies
the same set of adjustments. The second image is overexposed i different style (such as highly-saturated). Our current method
most of the image, so our system attempts to correct this by ad- treats all sequences of adjustments the same, and thus averages to-
justing the exposure. However, this only affects the region of the gether the various styles. This often leads to errors such as iter-
image with detail, and thus each iteration removes more detail from atively lowering saturation to near-grayscale, and a few iterations
the bridge until it has fully deteriorated. We expect that supporting later, increasing it to normal. One method is to take the difference in
local edits will alleviate this problem (see Sect@®n feature-space between the original and final images in the training
set. This will result in a difference-feature-vector which describes

Furthermore, sometimes underexposed photographs are intentionoW the image was modified overall. We would then cluster data
ally dark, such as as in low-key photography. We plan to identify Points in this difference-feature-space, and would train independent
these photographs by unsupervised style modeling as described if"0dels on each cluster.

Section8.

Cleaning Training Data The above clustering approach assumes
We believe these failure cases occur because the training data is unthat each iteration in the training data has the same style in mind,
familiar with the adjustments that would be needed for these photos. and each step gets closer to the final product. This is not the case
Further analysis showed that the quality of photos in the training in real data. To partially remedy this, we would have to remove any
corpus provided by the expert photographer was generelly much“loops” in the training data. A loop is a sequence of adjustments,
better than these example images. We expect that a larger trainingA;, ..., A, such that the feature vector before applying adjustment
corpus will at least partially remedy this problem. Ay is similar to the feature vector after applyiagy. Applying this

loop does not get us any closer to the desired result.



(c) Final Result
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(d) Original Image (e) Intermediate Result (f) Final Result

Figure 10: Some example results of our method. The first photograph in each thwe isput. The second photograph is an intermediate
result. The third is the final result. In our proposed Iterative Learningrapch we keep adjusting the photograph until it the user is pleased
with the final result. The first image shows a progressive increase ilitguahe second image changes very slightly at first (notice the
decreased exposure in the clouds), but the last several steps greadigise the quality. See Sectidi3 for a discussion.

(a) Original Image (b) Intermediate Result (c) Final Result

(d) Original Image (e) Intermediate Result (f) Final Result

Figure 11: Some exampléailure cases of our method. Notice in the first image, our method slowly increases ighatbhess until the
photograph is washed out. In the second image, the brightness is dedrsach that the bridge immediately deteriorates and remains in that
state. We show a border around the second image to illustrate the amdiufiyysfaturated pixels. See Sectidr8for a discussion.



Personalization by Adapting Style Priors to User Preferences 9 Conclusion
Because aesthetics are very subjective, we need a way of taking into
account an individual user’s personal preferences. This shmild  Wwe have presented a method to train a model of an expert artist.
more straightforward than the complicated approaches recently pro-Through a combination of a sequence learning model and a set of
posed Bychkovsky et al. 2011Yeh et al. 201pbecause we have  parameter learning models, we are able to present a user with a step-
access to the user’s Lightroom data as well. We can leverage thispy-step demonstration of how to improve an image. Our dataset is
data by weighting each cluster (mentioned above) by the styles theeasy to gather and robust against noise. Learning the underlying
user has applied in the past. This approach requires no extra effortmodel is easier using our dataset as opposed to datasets containing
for the user, unlike the other methods. It should also possible to per-only input/output image pairs. We show promising results using
sonalize the parameter and sequence models that were described ignly a very limited amount of training data, and describe a user
Sectiond. interface that facilitates a efficient and educational workflow for
novice photographers using Adobe Lightroom.
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