
Interactive Visualization for System Log Analysis

Armin Samii and Woojong Koh∗

University of California, Berkeley

Figure 1: Our visualization displays arbitrary system log data by parsing the variable parts of each log message. Each row
contains messages from a single node. Each column is a certain type of message. Each point is a single log message. The x
axis is time; the y axis is the value of the extracted variable. The colors indicate multiple variables in the same message. For
example, column two has two colors: blue is the number of valid patches, and red is the number of invalid patches. Notice here
that five nodes performed similarly (row 2), whereas one node (row 1) is performing more slowly, and thus the number of log
messages is sparse.

Abstract

We present a visualization interface to assist system admin-
istrators in searching system logs. Even with current regular
expression matchers such as grep, the amount of log data is
difficult for humans to understand. We augment grep with
a visualization of the matched patterns. To further reduce
the amount of information displayed, we cluster similarly-
performing nodes and only show a single node representative
of the entire cluster. The user can then interactively search
the log, zoom in on a certain time window, and choose the
number of clusters. Our simulations show that our clustering
is effective and our system is fast: the clustering success-
fully isolates anomalously-performing nodes in a variety of
situations; the visualization can interactively visualize hun-
dreds of millions of log messages across a hundred nodes at
interactive rates.

1 Introduction

The gears of a distributed system are complex and constantly
moving. A system administrator uses log files to under-
stand the underlying structure and detect anomalous behav-
ior. These logs are large, distributed across many filesys-
tems, and hard to understand even with today’s tools.

Our goal is to aggregate the log data into a visualization that

∗e-mail:{samii,wjkoh}@berkeley.edu

can be easily understood by the system administrator. The
two primary use cases are:

1. searching through system logs to find software bugs or
hardware failures, and

2. viewing the current system state on-the-go without ac-
cess to a command line.

To this end, our system contributes the following features:

1. trustable: the user is able to view the raw data at the
most “zoomed out” state;

2. fast and distributed: the proprocessing primarily oc-
curs at each node, with a single central node aggregat-
ing preprocessed data; and

3. interactive: the user can adjust the paramaters of the
visualization at interactive speeds.

With a large enough cluster, this will require focusing the
user’s attention on interesting parts of the system state. This
will require detecting anomalies, which in turn requires a
constantly-evolving model of what the normal state of the
system is.

Our system is open source and available on github 1.

1http://www.github.com/wjkoh/cs262a

http://www.github.com/wjkoh/cs262a


2 Related Work

Given the wide range of distributed applications, system log
analysis has been a prominent research area for decades. Un-
fortunately, given the available visualization tools in the past,
none are adequate for off-the-shelf use. We divide the related
work into two sections: system state analysis and system log
analysis. The system state refers to aggregating data about
the statistics of resource usage in a system, agnostic to the
application. System logs are arbitrary print statements in a
piece of code, distributed across one or more nodes.

2.1 System State Analysis

Ganglia2 is a system monitoring system which can handle up
to 2,000 nodes and aggregate statistics in real-time [Massie
et al. 2004]. It requires installing software on each running
node and can only handle predefined metrics; it does not al-
low user-defined metrics and does not utilize system logs.
The data is not clustered either, so either all nodes are vi-
sualized, or all nodes are aggregated. Finally, it is far from
interactive: simple options such as setting a time window
require many clicks. See Figure 2 for a screenshot of the
amount of data shown for a single node.

Munin, based on RRDtool, is similar to Ganglia: after instal-
lation on each node, it automatically presents a visualization
of the system status [Oetiker 1999]. As is evident from Fig-
ure 3, the visualization is extremely dense and illegible as
the number of nodes increases.

We use ideas from these system state visualizations, and ap-
ply them to system logs. We also recognize that viewing all
logs makes an illegible visualization, viewing one node at
a time is inefficient, and aggregating all nodes into a single
server status hides any anomalous behavior.

2.2 System Log Analysis

Wei Xu and collaborators [Xu et al. 2009b] uses machine
learning to detect anomalies by mining log data. When an
anomaly is detected, a decision tree visualization is pre-
sented to the user which attempts to explain why it is an
anomaly. This setup, while useful, is fundamentally un-
trustable: no algorithm can successfully detect all anoma-
lies, and the user will eventually have to resort to command-
line grep. We adopt their machine learning features for our
clustering algorithm.

HP Operations Analytics4 provides many similar features to
our work, including interactive time-window zooming. It
does not seem to cluster any data, nor does it focus on soft-
ware bugs, but instead analyze single-node server issues. It

2http://www.ganglia.info
3http://oss.oetiker.ch/rrdtool/gallery/index.en.

html
4http://www8.hp.com/us/en/software-solutions/

operations-analytics-operations-analysis/

seems to require modifying source code to work with their
log analysis system, which may limit its applicabilty. Unfor-
tunately, it is also closed-source proprietary software so we
are not able to test out its effectiveness.

Seaview has the closest goals to ours [Hangal 2011], and pro-
vide similar visualizations. However, they do not work with
arbitrary log types (notably, log messages with multiple vari-
ables), nor does it extend to multiple nodes or large amounts
of data. They include no machine learning or reduction of
the amount of data shown, other than a planned grep text
search.

Makanju and collaborators present spatio-temporal cluster-
ing of log data as well [Makanju et al. 2012]. Their method
does not seem to be, nor claim to be, interactive. Finally,
Saganowski and collaborators present a statistical method for
preprocessing features that will be used in anomaly detection
[Saganowski et al. 2013]. We find that these two methods
for clustering, feature extraction, and feature preprocessing
to be complementary to ours, and it would fit cleanly in our
interactive system.

3 Methods

We automatically extract the source code line which printed
each log message, the time it was printed, the node which
generated it, and the variable part of each log message.

Our algorithm can be summarized as follows:

1. Compute per-node features

2. Perform k-means clustering

3. Display interactive visualization

We desribe each of these in detail below.

3.1 Feature Extraction

Each node computes its own features, and passes on the fea-
ture vector as well as raw log data to the master server.

Following the example of Xu and collaborators [Xu et al.
2009b], we extract a message count vector in the time win-
dow requested by the user. The message count vector is the
number of unique times each message was printed. This is
a strong feature for failing or slowing nodes. The state ratio
vector compares how many times one type of message was
printed compared to similar ones; for example, the ratio of
file opens to file closes. We found that the state ratio vector
was not useful for our log data, and so we do not compute it
to save CPU time.

Using the extracted variables, we compute basic statistics
about each type of message. In a given time window, we
compute the:

1. mean,

http://www.ganglia.info
http://oss.oetiker.ch/rrdtool/gallery/index.en.html
http://oss.oetiker.ch/rrdtool/gallery/index.en.html
http://www8.hp.com/us/en/software-solutions/operations-analytics-operations-analysis/
http://www8.hp.com/us/en/software-solutions/operations-analytics-operations-analysis/


Figure 2: Screenshot of Ganglia (image courtesy of Wikipedia). This information shows various metrics for a single node.

Figure 3: A screenshot of RRDtool attempting to coherently display a lot of information to the user, but ending up extremely
cluttered.3



2. standard deviation,

3. slope of a linear regression,

4. z-score, and

5. r-value.

These would indicate anomalies involving, for example, a di-
verging residual in a machine learning application, a section
of code which takes too long to run, and a message which
keeps working on the same file rather than working on new
files.

3.2 Clustering

We perform k-means clustering in the feature vector
space [MacQueen 1967; Lloyd 1982]. With a small num-
ber of nodes (on the order of tens), the clustering can be
performed on a single machine quickly. On more nodes, a
distributed k-means algorithm is required, which can either
be exact and slower [Jin et al. 2006] or approximate [Ka-
nungo et al. 2002]. Since the clustering will occur each time
the user updates the parameters of the visualization, it is es-
sential that it is fast.

Once the desired number of centroids are found, we compute
the node which is closest to the centroid in a least-squares
sense and display only that node. Therefore, the visualiza-
tion master server need only receive O(k) data to pass on to
the user, linear with the number of centroids, instead of with
the total number of nodes.

3.3 Visualization

The master server collects the data from each node and uses
an HTTP Apache Server to pass the data on to the client. We
use d3.js to visualize the data [Bostock et al. 2011]. We use a
scatterplot where each point is a raw log message, the x axis
is time, and the y axis is the parsed variables (see Figure 1).
Mousing over a scatter point displays the text of the raw log
message. Each row in the visualization is the nearest node
to the centroid of the k-means clustering. Each column is
a specific type of log message, identified by its line in the
source code.

The user can interactively change the time window, the num-
ber of desired clusters, and the regular expression pattern.
With each change, the clusters are recomputed and new data
is shown. Clustering is only performed on the log messages
which match the regular expression pattern in the given time
window.

Because the visualization gets cluttered if there are too many
scatter points in a single graph, each graph at most shows
5,000 messages, each one evenly spaced in time. Zooming
in (narrowing the time range) allows finer sampling of the
log messages.

4 Implementation

We identify each log message by the node and source code
line that generated it. We assume that all logs are gener-
ated using the Google Logging Library (GLOG)5 in order to
know which source line generated which log message. This
assumption can be dropped using the mining algorithm of
Xu and collaborators [Xu et al. 2009a].

4.1 Log Parser

GLOG provides a consistent log format so we were able to
build a parser easily using Python’s regular expression li-
brary. After parsing we need to group every log message by
its message type and extract nominal and quantitative data
from the messages.

First, we group log messages by its source file name and
line number. We then separate dynamic parts of messages
from static parts using Ratcliff/Obershelp pattern recognition
[Ratcliff and Metzener 1988]. If the dynamic part is a string
instead of number (such as a filename), we simply discretize
the value. This will succeed in detecting if an anomalous
node is opening the same file repeatedly, and other similar
issues, but will fail on text data that is semantically mean-
ingful.

4.2 Feature Extraction and Clustering

The parameters requested by a user affect the input to the
clustering, so we need to be able to compute feature extrac-
tion at interactive rates. Our current implementation only
uses the message count vector [Xu et al. 2009b] for our fea-
ture vector to achieve such rates. Our message count vector
computation uses prefix sums, where each message at time
t = T knows the message count in the range t ∈ [0, T ].
To find the message count vector in a certain timerange
t ∈ [t0, t1], we find the closest message after t = t0 and the
closest message before t = t1, and subtract the prefix sum at
each of those times. This results in t ∈ [0, t1]− [0, t0] = t ∈
[t0, t1], the exact range we want. Similar optimizations can
be performed for the simple statistical features.

4.3 Visualization

We used d3.js [Bostock et al. 2011] and jQuery UI libraries
for our user interfaces. The front end of our framework is
a web-based dashboard, enabling easy viewing from a mo-
bile device while on-the-go. However, in our experience, the
interaction is much simpler on a large display.

In Figure 4 you can see the user controls of our visualization.
The controls allow control of the time window, the number of
clusters, and the regular expression command. There is also
control over the number of message types displayed, which

5https://code.google.com/p/google-glog/

https://code.google.com/p/google-glog/


Figure 4: The configuration options available to the user
via our web framework. The user can change these options
at interactive rates.

should only display the most representative message types;
we have not yet implemented this algorithm.

5 Results

The success of our system depends on three axes: clustering
performance, speed, and user friendliness. The third axis
is the most difficult to evaluate, but we currently have one
user of the system who is excited to use and improve it. We
formally evaluate the other two axes here.

5.1 Anomaly Detection

The metric of success for anomaly detection is as follows:
assuming only one node is anomalous, how many clusters
are required until that node is in its own cluster? The best-
case scenario is two clusters: one for each of the n− 1 well-
performing nodes, and another for the anomalous node.

We simulate five experiments on a seven node cluster using
six nodes of real data and one node of simulated anomalous
data. The five anomalies tested are:

1. Failed node

One node fails when the algorithm is 80% to comple-
tion, and all other nodes run to completion.

2. Node 5% slower

One node runs 5% slower than the speed of the other

Failed node Node 5%

slower

Node 1%

slower

50% of log

is junk

99% of log

is junk

1 2 3 4 5

0

1

2

3

4

Simulation Number

N
u
m

b
e
r

o
f
C
lu

st
e
rs

Figure 5: Results for anomaly detection via clustering. The
x axis shows different simulation evaluations; the yaxis is
the number of clusters required until the anomalous node is
in its own cluster. Two clusters is the best-case scenario.
See Section 5.1 for a description of each of the simulation
numbers.

nodes

3. Node 1% slower

One node runs 1% slower than the speed of the other
nodes

4. 50% of log is junk

Half of the messages in each log file are random, both
in time and in value. One node is still 5% slower. Can
the anomalous node be detected?

5. 99% of log is junk

Only one out of every hundred messages is real. One
node is still 5% slower. Can the anomalous node be
detected? Note that the file size here is bloated to 100
times the actual log data.

Figure 5 shows the performance of our clustering on each of
the above tests. Most of the clustering successfully detects
an anomaly with just two clusters. The two failure cases are
a 1% slowdown of a node, and when 99% of the log is not
useful information and information is outputted at random
times. We assume these cases are rare, and are satisfied with
successfully clustering a 5% slowdown and 50% junk log
data.

We would like to eventually compare our algorithm with the
results of Xu and collaborators [Xu et al. 2009b]. Unfortu-
nately, all of their results used private and proprietary logs,
so we could not do a direct comparison.

5.2 Timing

Our log files had over 500,000 messages per node. After
compression, 30MB of data were sent to the master server



Per-Node

Log Parsing

Per-Node

Preprocessing
5 node

Clustering

100 node

Clustering

1 2 3 4

0

10

20

30

40

50

60

70

Compute Type

C
P
U

u
sa

g
e

p
e
r

n
o
d
e

HsL

Figure 6: Timing information. The first column is the per-
node log parsing and feature extraction. The second column
is the work the master server must do. The last column is
the time a user must wait until an updated visualization is
displayedafter changing the configuration. See Section 5.2
for more details.

per node. The visualization was served to the client via
an HTTP server, and all javascript visualizations were com-
puted client-side, so the only cost of visualization is generat-
ing and transferring the data.

Figure 6 shows basic timing information of our system.
From this, it is clear that the per-node cost is small: less than
two seconds to compute features per-node. This preprocess-
ing is the bottleneck in our unoptimized implementation. Af-
ter the distributed preprocessing this data is then passed on
to the master node, which prepares to send it to the client via
HTTP. Finally, when the user changes the parameters with
the web interface, the k-means clustering is recomputed at
interactive rates.

When the number of nodes increases to 100, and the number
of log messages to 50 million, we are still able to run the
clustering in 2.1 seconds on a single thread. We have not
found it necessary to use distributed or approximate k-means
clustering, but if the number of nodes increases, it will be
worthwhile to use a sublinear k-means algorithm.

6 A Note on the Data

Our goal for this project was to assist in analyzing a specific
source of log files, which was a machine learning algorithm
on terabytes of data. The machine learning algorithm used
about 80 processes, each with its own log file, and spread
over around a dozen machines. There are regular failures
which are currently cumbersome to find and debug. At the
same time, we kept our system general enough to work on
other types of log files, particularly one with many more than
a dozen nodes.

For this particular application, we believe our system can

immensely simplify the analysis of the log data. Diverging
residuals, crashed nodes, and network failures are the com-
mon failure cases, and our system can capture all of these.
While other log analysis research often focuses on analysis
of a system [Xu et al. 2009a; Xu et al. 2009b], we also fo-
cus on analysis of an algorithm which periodically logs its
progress. The failures are then in the variables, not the exis-
tence of the message.

7 Conclusions and Future Work

We have presented a system for visualizing arbitrary log
files. The log files are automatically and distributedly parsed,
features are computed per node, and the results are visual-
ized in an easy-to-use web interface. We cluster similarly-
performing nodes into a single visualization to abstract away
redundant data.

The visualization has a spectrum of parameters. On one end
of this spectrum, the raw log data is shown; on the other
end, a single graph shows the most representative state of
the system. This is important to maintain trustworthiness of
the visualization: no data is hidden from the user.

Our visualization is still extremely primitive. Users may
have no intuition as to why two clusters are separated. Dis-
playing a cluster confidence may assist in telling the user
when two clusters are not very different. On the other hand,
if two clusters should be different, we would want to provide
an explanation to the user similar to the decision tree visual-
ization of Xu and collaborators [2009b]. As is, it would be
very hard for a user to notice a 1% slowdown in a node.

We would like to compute more representative features for
the clustering, including higher-order statistics. However, as
the feature complexity increases, the interactivity decreases.
Finding a middle-ground between interactivity and complex-
ity is an difficult problem: we must be able to compute all of
the features without touching all of the data.

Finally, we would need a more thorough evaluation of our
visualization. Some questions we have are:

1. is a scatterplot the best visualization choice?

2. are we able to successfully segregate other types of
anomalies in different clusters?

3. can multiple messages be aggregated into the same
plot?

4. what additional information would assist the human in
understanding the visualization?

There is a lot to be desired before our system is usable in
the wild. We believe we have taken a major step in the right
direction by providing the user with tools to explore the raw
log data, rather than trying to predict what they would like to
know.



Acknowledgements

The authors would like to thank Ling Huang for helpful dis-
cussions and insight into the structure of log files, Sean Ari-
etta for providing us with the log data gathered from his re-
search project, and John Kubiatowicz and Anthony Joseph
for their guidance throughout this project. Adrien Truielle at
Carnegie Mellon University provided the desktop machine
on which we ran our experiments.

References

BOSTOCK, M., OGIEVETSKY, V., AND HEER, J. 2011.
D3: Data-driven documents. IEEE Trans. Visualization &
Comp. Graphics (Proc. InfoVis).

HANGAL, S. 2011. Seaview: Using fine-grained type infer-
ence to aid log file analysis.

JIN, R., GOSWAMI, A., AND AGRAWAL, G. 2006. Fast
and exact out-of-core and distributed k-means clustering.
Knowledge and Information Systems 10, 1, 17–40.

KANUNGO, T., MOUNT, D. M., NETANYAHU, N. S., PI-
ATKO, C. D., SILVERMAN, R., AND WU, A. Y. 2002. A
local search approximation algorithm for k-means cluster-
ing. In Proceedings of the eighteenth annual symposium
on Computational geometry, ACM, 10–18.

LLOYD, S. 1982. Least squares quantization in pcm. Infor-
mation Theory, IEEE Transactions on 28, 2, 129–137.

MACQUEEN, J. B. 1967. Some methods for classification
and analysis of multivariate observations. In Proc. of the
fifth Berkeley Symposium on Mathematical Statistics and
Probability, University of California Press, L. M. L. Cam
and J. Neyman, Eds., vol. 1, 281–297.

MAKANJU, A., ZINCIR-HEYWOOD, A. N., MILIOS, E. E.,
AND LATZEL, M. 2012. Spatio-temporal decomposition,
clustering and identification for alert detection in system
logs. In Proceedings of the 27th Annual ACM Symposium
on Applied Computing, ACM, 621–628.

MASSIE, M. L., CHUN, B. N., AND CULLER, D. E. 2004.
The ganglia distributed monitoring system: design, imple-
mentation, and experience. Parallel Computing 30, 7, 817
– 840.

OETIKER, T., 1999. Rrdtool. http://oss.oetiker.
ch/rrdtool/.

RATCLIFF, J. W., AND METZENER, D. 1988. Pattern
matching: The gestalt approach. Dr. Dobb’s Journal
(July), 46.

SAGANOWSKI, L., GONCERZEWICZ, M., AND
ANDRYSIAK, T. 2013. Anomaly detection prepro-
cessor for snort ids system. In Image Processing and
Communications Challenges 4, R. S. Chora, Ed., vol. 184

of Advances in Intelligent Systems and Computing.
Springer Berlin Heidelberg, 225–232.

XU, W., HUANG, L., FOX, A., PATTERSON, D., AND JOR-
DAN, M. 2009. Online system problem detection by min-
ing patterns of console logs. In Proceedings of the 2009
Ninth IEEE International Conference on Data Mining,
IEEE Computer Society, Washington, DC, USA, ICDM
’09, 588–597.

XU, W., HUANG, L., FOX, A., PATTERSON, D., AND JOR-
DAN, M. I. 2009. Detecting large-scale system prob-
lems by mining console logs. In Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Princi-
ples, ACM, New York, NY, USA, SOSP ’09, 117–132.

http://oss.oetiker.ch/rrdtool/
http://oss.oetiker.ch/rrdtool/

